5.1A Solving Quadratic Equations by Graphing

- What does "find the zeros of the function" mean? To find the x-value(s) that make the function f(x) = 0
- When you are solving a quadratic equation by graphing, what do you look for on the graph?

The x-intercepts

#3 – 5: Determine whether the quadratic functions have two real roots, one real root, or no real roots. If possible, list the zeros of the function.

5.

Number and type

of roots: 1 real rout

Zeros: $\chi = 3$

Number and type

Zeros: MONE

Number and type

of roots: <u>No real ro</u>ots of roots: 2 real roots

Zeros: X = 0 or X = -3

#6-7: Use the graph to find the zeros of the following quadratic functions. Check that the solutions work.

 $f(x) = x^2 + 2x - 15$

7. $f(x) = -2x^2 + 8x$

Solution(s):

Solution(s): $f(0) = -\frac{1}{2}(0)^3 + \frac{8}{2}(0) = 0$ Check: $f(4) = -\frac{1}{2}(4)^3 + \frac{8}{2}(4)$ $\frac{-3}{2} + \frac{3}{2} = 0$

5.1A Solving Quadratic Equations by Graphing

#8 - 9: Graph each of the following quadratic functions and use the graph to find the zeros. Create a table of values if necessary. Verify that the values truly are solutions.

8.
$$f(x) = -x^2 + 4x + 12$$

Solution(s): [x = -2, 6]Verify: $f(-2) = -(-2)^2 + 4(-2) + 12$ = -(4) + 78 + 12 = -(4) + 78

9. $f(x) = x^2 + 3x - 10$

Solution(s): X = -5, 2Verify: $f(-5) = (-5)^2 + 3(-5) - 10$ = 25 + -15 - 10 = 0 $f(x) = (-5)^2 + 3(-5) = 0$

to the nearest hundredth. Question #13 – 15, verify that the values truly are solutions.

10.
$$x^2 - 7x = 11$$

 $x^3 - 7x - 11 = 0$

12.
$$5x^2 - 7x - 3 = 8$$

 $5x^2 - 7x - 3 = 8$

13.
$$\frac{1}{2}x^2 - x = 8$$

Solution(s): $\chi = -3.12$, 5.12 (Solution(s): $\chi = -5.16$, 1.16) (Solution(s): $\chi = -1.16$, 2.16)

Verify: $(-5.16)^2 + 4(-5.16)^2 + 5.99$ (Solution(s): $\chi = -1.16$, 2.16)

Verify: $(-5.16)^2 + 4(-5.16)^2 + 5.99$ (Solution(s): $\chi = -1.16$, 2.16)

Verify: $(-5.16)^2 + 4(-5.16)^2 +$

5.1 I CAN USE TABLES AND GRAPHS TO SOLVE QUADRATIC EQUATIONS INCLUDING REAL-WORLD SITUATIONS AND TRANSLATE BETWEEN REPRESENTATIONS.

5.1A Solving Quadratic Equations by Graphing

#16 – 18: Use a graphing utility to graph the following functions. Draw the graph of the function. Use the graphing utility to approximate the zeros to the nearest tenth.

17. $f(x) = 5x^2 + 30x + 25$

18. $f(x) = 3x^2 + 18x \pm 15$

Solution(s): -5,-/

Solution(s): -5, -1

Solutions: -5, -1

#19 - 21: Use a graphing utility to graph the following functions. Draw the graph of the function. Use the graphing utility to approximate the zeros to the nearest tenth.

19. $f(x) = x^2 + 8x$

Solution(s): 0, -8

Solution(s): $\mathcal{O}_1 - \mathcal{V}$ 22. Investigation:

- a) Looking to Question #16 18, record the following: Function in #16 $f(x) = x^2 + 6x + 5$ Solution

 - Function in #17 $f(x) = 5x^2 + 30x + 35$
- Solutions in #16 $\times = 5$ / Solutions in #17 $\times = 5$ / Solutions in #18 $\times = 5$ /
- > Function in #18 $f(x) = 3x^3 + 18x + 15$
- b) Looking to Question #19 21, record the following:
 - > Function in #19 $f(x) = x^2 + 8x$ Solutions in #19 x = 6, -8> Function in #20 $f(x) = \frac{1}{2}x^2 + \frac{1}{2}x$ Solutions in #20 x = 0, -8> Function in #21 $f(x) = 3x^2 + \frac{1}{2}x$ Solutions in #21 x = 0, -8

- c) Comparing the functions in questions 16, 17, and 18, and then again in 19, 20, and 21, write a conjecture about the relationship of the functions within each set of questions and the solutions of those functions.

5.1A Solving Quadratic Equations by Graphing

23. A bottlenose dolphin jumps out of the water. The path the dolphin travels can be modeled by the function $h(d) = -0.2d^2 + 2d$, where h represents the height, in feet, of the dolphin and d represents the horizontal distance, in feet, the dolphin traveled. h(d)

a) Sketch a graph of the quadratic equation.

- b) What is the maximum height the dolphin reaches? Where is this represented on the graph of the function?

 5 ft; the vertex
- c) What is the horizontal distance that the dolphin jumps? Where is this represented on the graph of the function?

 10 ft; the x in tercept > 0

Section 5.1A